SpinjDirac operators on the fuzzy 2-sphere

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chiral Anomaly on Fuzzy 2-Sphere

We investigate chiral anomaly for fermions in fundamental representation on noncommutative (fuzzy) 2-sphere. In spite that this system is realized by finite dimensional matrices and no regularization is necessary for either UV or IR, we can reproduce the correct chiral anomaly which is consistent with the calculations done in flat noncommutative space. Like the flat case, there are ambiguities ...

متن کامل

2 - sphere Schrodinger operators with odd potentials

The paper extends our earlier results on spectral theory of the 2-sphere Schrodinger operators H = A + Vwith even zonal potentials to a more difficult odd-potential case. We establish local spectral rigidity for odd zonal potentials and give the explicit solution of the inverse spectral problem. We are interested in the spectral theory of Schrodinger operators H = A + V on the 2-sphere S2 with ...

متن کامل

Quasi-Dirac Operators on the Sphere

We investigate examples of quasi-spectral triples over two-dimensional commutative sphere, which are obtained by modifying the order-one condition. We find quasi-Dirac operators and calculate the index paring with a representant of K-theory class to prove that the quasispectral triples are mutually inequivalent. MSC 2000: 58B34, 46L87, 34L40

متن کامل

Localized Linear Polynomial Operators on the Sphere

The purpose of this paper is to construct universal, auto–adaptive, localized, linear, polynomial (-valued) operators based on scattered data on the (hyper–)sphere Sq (q ≥ 2). The approximation and localization properties of our operators are studied theoretically in deterministic as well as probabilistic settings. Numerical experiments are presented to demonstrate their superiority over tradit...

متن کامل

Criteria for Toeplitz Operators on the Sphere

Let H(S) be the Hardy space on the unit sphere S in C. We show that a set of inner functions Λ is sufficient for the purpose of determining which A ∈ B(H(S)) is a Toeplitz operator if and only if the multiplication operators {Mu : u ∈ Λ} on L(S, dσ) generate the von Neumann algebra {Mf : f ∈ L∞(S, dσ)}.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2009

ISSN: 1029-8479

DOI: 10.1088/1126-6708/2009/09/120